Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Water ; 14(23):3798, 2022.
Article in English | MDPI | ID: covidwho-2123933

ABSTRACT

Wastewater-based epidemiology (WBE) is a beneficial tool for comprehensive health information on communities, especially during the COVID-19 pandemic. In developing countries, including Thailand, the application of WBE is limited. Few SARS-CoV-2 detections and variants have been monitored in wastewater in these countries. This is because of the time-consuming, low recovery of viruses in the concentration techniques and difficulties in finding the proper primers and amplification kits. Therefore, this study aimed to quantify SARS-CoV-2 RNA concentration using a commercial clinical kit. We identified the SARS-CoV-2 variants and estimated the detection costs in the wastewater samples. One hundred and fifty hospital wastewater samples were filtered with commercial ultrafiltration (UF) and then detected for the SARS-CoV-2 concentration using a Sansure Biotech SARS-CoV-2 kit. The recovery of the virus concentration technique in UF was studied using a surrogate (porcine epidemic diarrhea virus). The virus detection in wastewater was quantified by RT-qPCR. In addition, the mutation sites in the partial spike glycoprotein (S) gene of SARS-CoV-2 were verified using short nested RT-PCR. The results showed a high recovery of the commercial UF (80.53%), and 24.6% of hospital wastewater contained SARS-CoV-2. The detection of SARS-CoV-2 in wastewater cost USD 35.43 per sample. The virus variants revealed V70del, H69del, and V144del mutations in the partial S gene of SARS-CoV-2 in B.1.1.7 (SARS-CoV-2 Alpha variant), and T95I and G142D mutations in B.1.617.2 (Delta variant).

2.
Trop Med Infect Dis ; 7(7)2022 Jul 12.
Article in English | MEDLINE | ID: covidwho-1928651

ABSTRACT

Serology remains a useful indirect method of diagnosing tropical diseases, especially in dengue infection. However, the current literature regarding cross-reactivity between SARS-CoV-2 and dengue serology is limited and revealed conflicting results. As a means to uncover relevant serological insight involving antibody classes against SARS-CoV-2 and cross-reactivity, anti-SARS-CoV-2 IgA, IgM, and IgG ELISA, based on spike and nucleocapsid proteins, were selected for a fever-presenting tropical disease patient investigation. The study was conducted at the Faculty of Tropical Medicine during March to December 2021. The study data source comprised (i) 170 non-COVID-19 sera from 140 adults and children presenting with acute undifferentiated febrile illness and 30 healthy volunteers, and (ii) 31 COVID-19 sera from 17 RT-PCR-confirmed COVID-19 patients. Among 170 non-COVID-19 samples, 27 were false positives (15.9%), of which IgA, IgM, and IgG cross-reactive antibody classes were detected in 18 (10.6%), 9 (5.3%), and 3 (1.8%) cases, respectively. Interestingly, one case exhibited both IgA and IgM false positivity, while two cases exhibited both IgA and IgG false positivity. The false positivity rate in anti-SARS-CoV-2 IgA and IgM was reported in adults with dengue infection (11.3% and 5%) and adults with other tropical diseases (16.7% and 13.3%). The urea dissociation method applied to mitigate false positivity resulted in significantly decreased ELISA-based false and true positives. In conclusion, the analysis of antibody against SARS-CoV-2 in sera of patients with different tropical diseases showed that high IgA and IgM false positivity thus potentially limits serological assay utility in fever-presenting patients in tropical areas.

3.
J Water Health ; 20(2): 300-313, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1760069

ABSTRACT

Public toilets may increase the risk of COVID-19 infection via airborne transmission; however, related research is limited. We aimed to estimate SARS-CoV-2 infection risk through respiratory transmission using a quantitative microbial risk assessment framework by retrieving SARS-CoV-2 concentrations from the swab tests of 251 Thai patients. Three virus-generating scenarios were investigated: an infector breathing, breathing with a cough, and breathing with a sneeze. The infection risk (95th percentile) was as high as 10-1 with breathing and increased to 1 with a cough or a sneeze. No significant gender differences for toilet users (receptors) were noted. The highest risk scenario, namely breathing with a sneeze, was further evaluated for risk mitigation measures. Mitigation to a lower risk under 10-3 succeeded only when the infector and the receptor both wore N95 respirators or surgical masks. Ventilation of up to 20 air changes per hour (ACH) did not decrease the risk. However, an extended waiting time of 10 min between an infector and a receptor resulted in approximately 1.0-log10 further risk reduction when both wore masks with the WHO-recommended 12 ACH. The volume of expelled droplets, virus concentrations, and receptor dwell time were identified as the main contributors to transmission risk.


Subject(s)
COVID-19 , Masks , Humans , Bathroom Equipment , Cough , COVID-19/prevention & control , Risk Assessment , SARS-CoV-2 , Public Health , Thailand , Communicable Disease Control
4.
Talanta ; 249: 123375, 2022 Nov 01.
Article in English | MEDLINE | ID: covidwho-1730117

ABSTRACT

Colorimetric loop-mediated DNA isothermal amplification-based assays have gained momentum in the diagnosis of COVID-19 owing to their unmatched feasibility in low-resource settings. However, the vast majority of them are restricted to proprietary pH-sensitive dyes that limit downstream assay optimization or hinder efficient result interpretation. To address this problem, we developed a novel dual colorimetric RT-LAMP assay using in-house pH-dependent indicators to maximize the visual detection and assay simplicity, and further integrated it with the artificial intelligence (AI) operated tool (RT-LAMP-DETR) to enable a more precise and rapid result analysis in large scale testing. The dual assay leverages xylenol orange (XO) and a newly formulated lavender green (LG) dye for distinctive colorimetric readouts, which enhance the test accuracy when performed and analyzed simultaneously. Our RT-LAMP assay has a detection limit of 50 viral copies/reaction with the cycle threshold (Ct) value ≤ 39.7 ± 0.4 determined by the WHO-approved RT-qPCR assay. RT-LAMP-DETR exhibited a complete concordance with the results from naked-eye observation and RT-qPCR, achieving 100% sensitivity, specificity, and accuracy that altogether render it suitable for ultrasensitive point-of-care COVID-19 screening efforts. From the perspective of pandemic preparedness, our method offers a simpler, faster, and cheaper (∼$8/test) approach for COVID-19 testing and other emerging pathogens with respect to RT-qPCR.


Subject(s)
COVID-19 , Artificial Intelligence , COVID-19/diagnosis , COVID-19 Testing , Colorimetry/methods , DNA , Humans , Nucleic Acid Amplification Techniques/methods , Point-of-Care Systems , RNA , RNA, Viral/genetics , SARS-CoV-2/genetics , Sensitivity and Specificity
5.
PLoS One ; 16(8): e0255796, 2021.
Article in English | MEDLINE | ID: covidwho-1350170

ABSTRACT

Serological assays to detect antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) might contribute to confirming the suspected coronavirus disease 2019 (COVID-19) in patients not detected with molecular assays. Human antibodies that target the host angiotensin-converting enzyme 2-binding domain of the viral spike protein are a target for serodiagnosis and therapeutics. This study aimed to characterize the classes and subclasses of antibody responses to a recombinant receptor-binding protein (RBD) of SARS-CoV-2 in COVID-19 patients and investigated the reactivity of these antibodies in patients with other tropical infections and healthy individuals in Thailand. ELISAs for IgM, IgA, IgG and IgG subclasses based on RBD antigen were developed and tested with time series of 27 serum samples from 15 patients with COVID-19 and 60 samples from pre-COVID-19 outbreaks including acute dengue fever, murine typhus, influenza, leptospirosis and healthy individuals. Both RBD-specific IgA and IgG were detected in only 21% of the COVID-19 patients in the acute phase. The median IgA and IgG levels were significantly higher in the convalescent serum sample compared to the acute serum sample (P < 0.05). We observed the highest correlation between levels of IgG and IgA (rho = 0. 92). IgG1 and IgG3 were the major IgG subclasses detected in SARS-CoV-2 infection. Only acute IgG3 level was negatively associated with viral detection based on RT-PCR of ORF1ab gene (rho = -0.57). The median IgA and IgG levels in convalescence sera of COVID-19 patients were significantly higher than healthy individuals and convalescent sera of other febrile infectious patients. The analyses of antibody classes and subclasses provide insights into human immune responses against SARS-CoV-2 during natural infection and interpretation of antibody assays.


Subject(s)
Antibodies, Viral/blood , Antibody Formation , COVID-19/pathology , Immunoglobulin Isotypes/blood , Spike Glycoprotein, Coronavirus/immunology , Adult , Aged , COVID-19/blood , COVID-19/virology , Female , Humans , Immunoglobulin A/blood , Immunoglobulin G/blood , Immunoglobulin M/blood , Longitudinal Studies , Male , Middle Aged , Protein Domains/immunology , Recombinant Proteins/biosynthesis , Recombinant Proteins/immunology , SARS-CoV-2/isolation & purification , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Thailand , Young Adult
6.
Am J Trop Med Hyg ; 103(3): 1204-1206, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-646641

ABSTRACT

The quality and type of specimen collection affect the sensitivity of real-time reverse transcriptase-PCR (rRT-PCR) for the diagnosis of SARS-CoV-2. In this report, the course over time of rRT-PCR for SARS-CoV-2 in 26 clinical specimens collected from the upper (nasopharyngeal and throat swabs) and lower (sputum) respiratory tracts of COVID-19 cases with pneumonia was investigated along with the clinical course. The preliminary results revealed that higher SARS-CoV-2 RNA concentration and longer time for detection make self-collected sputum a preferable specimen for the diagnosis and follow-up of COVID-19 pneumonia. Self-collection of sputum can minimize the risk of unnecessary exposure to healthcare workers, preserve the shortage of personal protective equipment, and limit viral transmission to the environment.


Subject(s)
Betacoronavirus , Coronavirus Infections/diagnosis , Pneumonia, Viral/diagnosis , Real-Time Polymerase Chain Reaction/methods , Specimen Handling/methods , Adult , Aged , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Male , Middle Aged , Nasopharynx/virology , Pandemics , RNA, Viral/analysis , SARS-CoV-2 , Sputum/virology
7.
Am J Trop Med Hyg ; 2020.
Article | WHO COVID | ID: covidwho-322737

ABSTRACT

We report a young Thai man from the Thai-Myanmar border suffering from 2 days of fever and myalgia without respiratory tract signs or symptoms. He reported no history of travel through an area with confirmed COVID-19 cases or contact with sick persons. After excluding malaria and dengue, which are common causative agents of acute undifferentiated febrile illness (AUFI) in Thailand, chest radiography was performed according to the patient triage protocol of our institute for AUFI during the COVID-19 outbreak. Chest radiography revealed findings compatible with pneumonia. Nasopharyngeal, throat, and sputum samples tested positive for SARS-CoV-2 by real-time reverse transcriptase-PCR. The preadmission diagnosis of COVID-19 in this patient enabled appropriate management and isolation to prevent nosocomial transmission. Fever and nonspecific symptoms and laboratory results in early COVID-19 may be difficult to distinguish from tropical infectious diseases, especially when respiratory signs and symptoms are absent. This fact necessitates vigilant awareness in clinical investigation, management, and infection control, especially in tropical resource-limited settings.

SELECTION OF CITATIONS
SEARCH DETAIL